

CFD thermal simulations IBL with 47 mm i.d. beam pipe

Enrico Da Riva, Anne-Laure Lamure CFD Team (EN/CV)

Geometry and material properties

Beam pipe geometry & materials

Insulation layer (48.6 mm < D < 56.4 mm) modeled in the CFD simulations.
Equivalent thermal conductivity 0.0156 W m⁻¹K⁻¹ (~ aerogel conductivity).
Boundary conditions (250 °C for bake out) set at the outside of beryllium pipe.
Aluminum foil emissivity = 0.05 (slightly overestimated).

CFD team

IBL geometry & materials

MATERIALS						
	Thickness [µm]	Conductivity [W m ⁻¹ K ⁻¹]				
OMEGA (Carbon Fiber)	150	2.2				
CARBON FOAM	-	25				
TITANIUM PIPE (i.d. 1.5 mm)	100	7.2				
GLUE	70	1				
CHIP (silicon)	250	148				
BONDING	300	6.32				
SENSOR (silicon)	200	148				

□ Perfect thermal contact between different layers in the CFD simulations.

Services geometry & materials

MATERIALS				
	Conductivity [W m ⁻¹ K ⁻¹]			
CARBON FIBER	2.2			
TITANIUM PIPE (i.d. 1 mm)	7.2			
BEAM PIPE INSULATION	0.0156			
BUNDLE	0.5 - 0.02			

- Difficult estimation of the bundle equivalent thermal conductivity.
- □ Two cases considered: full polyimide (k = 0.5 W m⁻¹K⁻¹) and very worst case scenario: solid with thermal properties of nitrogen (k = 0.02 W m⁻¹K⁻¹).

Simulation cases

- 1. IBL-only cross section, bake-out
- 2. IBL-only cross section, nominal operation
- 3. Services-only cross section, bake-out
- 4. Services-only cross section, nominal operation

Settings

- $\Box \text{ Nitrogen flow rate} = 0 \text{ kg/s}.$
- □ Natural convection of nitrogen taken into account.
- □ Radiative heat transfer taken into account (emissivity 0.05 for beam pipe, 1 for other surfaces).
- Dependence of nitrogen properties on temperature taken into account.
- □ Laminar natural convection flow.
- Geometry of B-layers not available. IST set as adiabatic.

CED team 1. IBL-only, bake-out (temperature)

CFD team 1. IBL-only, bake-out (velocity)

E. Da Riva, A.L. Lamure

EN

CFD team 2. IBL-only, nominal operation (temperature)

 \Box 0.5 W cm⁻² on the chip, 0.35 W cm⁻² on the sensor (total ~100 W per stave).

EN)

GED team 3. Services, bake-out

3A) Bundle equivalent conductivity k = 0.5 W m⁻¹ K⁻¹

Contours of Static Temperature (c)

3. Services, bake-out CFD team

EN

3B) WORST CASE SCENARIO: Bundle equivalent conductivity k = 0.025 W m⁻¹ K⁻¹

Contours of Static Temperature (c)

4. Services, nominal operation CFD team

Contours of Static Temperature (c)

EN

Summary table

Simulation	T. max (sensor or bundle) [°C]	Heat from beam pipe [W m ⁻¹]	Heat flux on cooling pipe inner surface [W m ⁻²]
IBL, bake-out	-36	167	2532
IBL, nominal operation	-25	0	31850
Services, bake out	-31/48	59/49	1355/1117
Services, nominal operation	<8	0	640

□ According to the present results, no cooling problem is expected during the bake-out.

Estimation of actual titanium temperature

- EN
- □ In the simulations, the temperature of inner surface of the titanium pipe is set as the CO_2 saturation temperature (i.e. -40°C).
- A rough estimation of the CO_2 heat transfer coefficient and the actual saturation-towall temperature difference has been obtained by means of the Cooper correlation (for pool boiling).

Simulation	Heat flux on cooling pipe inner surface [W m ⁻²]	HTC [W m ⁻² K ⁻¹]	Refrigerant/wall ΔT [K]
IBL bake-out	2532	1400	~2
IBL nominal operation	31850	7400	~4
Services bake out	1355/1117	800	~1.5
Services nominal operation	640	500	~1

Thank you

